386 research outputs found

    The development of advanced creep constitutive equations for high chromium steel P91 at low stress range

    Get PDF
    Diffusion dominates the creep deformation at low stress range for high chromium steel P91. Brittle creep fracture is caused by cavity nucleation, growth and coalescence of cavities and large precipitates (Laves phase and M23C6) at grain boundary under low stress range. At low stress range, a linear relation between strain at failure and different stresses has been described. Moreover, the minimum strain rate is also proportional to the different stresses

    Review of creep deformation and rupture mechanism of P91 alloy for the development of creep damage constitutive equations under low stress level

    Get PDF
    This paper presents a review of creep deformation and rupture mechanism of P91 alloy for the development of its creep damage constitutive equations under lower stress level. Creep damage is one of the serious problems for the high temperature industries and computational approach (such as continuum damage mechanics) has been developed and used, complementary to the experimental approach, to assist safe operation. However, there are no ready creep damage constitutive equations to be used for prediction the lifetime for this type of alloy, partially under low stress. The paper reports a critical review on the deformation and damage evolution characteristics of this alloy, particularly under low stress, to form the physical base for the development of creep damage constitutive equations. It covers the influence of the stress level, states of stress, and the failure criterion

    Review on the current state of developing of advanced Creep Damage Constitutive Equations for high Chromium Alloy

    Get PDF
    This paper presents a review of developing of creep damage constitutive equations for high chromium alloy (such as P91 alloy). Firstly, it briefly introduces the background of creep damage for P91 materials. Then, it summarizes the typical creep damage constitutive equations developed and applied for P91 alloy, and the main deficiencies of KRH (Kachanov-Robatnov-Hayhurst) type and Xus type constitutive equations. Finally it suggests the directions for future work. This paper contributes to the knowledge for the developing creep damage constitutive equations for the specific material

    Analyzing the characteristics of the cavity nucleation, growth and coalescence mechanism of 9Cr-1Mo-VNb steel (P91) steel

    Get PDF
    Creep damage is one of the serious problems for the high temperature industries and computational approach (such as continuum damage mechanics) has been developed and used, complementary to the experimental approach, to assist safe operation. However, there are no ready creep damage constitutive equations to be used for predicting the lifetime for this type of alloy, particularly for low stress. This paper presents an analysis of the cavity nucleation, growth and coalescence mechanism of 9Cr-1Mo-VNb steel (P91 type) under high and low stress levels and multi-axial stress state

    Preliminary analysing of experimental data for the development of high Cr Alloy Creep damage Constitutive Equations

    Get PDF
    This conference paper presents the current research of preliminary analysing of experimental data for the development of high Cr Alloy Creep damage Constitutive Equations (such as P91 alloy). Firstly, it briefly introduces the background of general creep deformation, rupture and continuum damage mechanics. Secondly, it illustrates the constitutive equations used for P91 alloy or its weldment, especially of the form and deficiencies of two kinds of most widely used typical creep damage constitutive equations Kachanov-Rabotnov-Hayhurst (KRH) and Xu’s formations. And then, the methodology for development of new set constitutive equation proposed by Xu (2004) has been followed in this research. Fourthly, there is a critically analysis of the specific experiment data for P91 alloy and its weldment. Afterwards, the specific requirements for developing a new set constitutive equation have been reported

    The development of advanced creep constitutive equations for high chromium alloy steel (P91) at transition stress range

    Get PDF
    Creep damage is a time-dependent deformation in metals under a constant stress at high temperature condition. Since the 1980s, high chromium alloy steel P91 (9%Cr-1%Mo-0.25%V) is highly demanded in high temperature industries (Saha, 2003). Continuum damage mechanism is becoming a generic life assessment tool to predict the lifetime of materials at creep condition. The consitutive equations were proposed to predict the lifetime and creep behaviours of materials. The most widely used constitutive equations are simply called Kachanov-Rabotnov-Hayhurst (KRH) in the current research. The lifetime of high chromium alloy steel P91 has been overestimated by the extrapolation method from short-term creep tests (high stress) to long-term creep tests (lower stress). The definition of stress ranges depends on different materials and temperatures. The current researcher classifies the stress ranges into high stress range, transition stress range and low stress range with stress exponen

    Harmony in diversity:Can One Belt One Road initiative promote China’s OFDI?

    Get PDF
    This paper investigates the effect of the One Belt One Road (OBOR) initiative on China’s outward foreign direct investment (OFDI) using a dataset of all host countries for the period of 2010–2015. The employed econometric technique combines a difference-in-differences estimator with matching techniques. The results show that China’s OFDI in OBOR countries is about 40% higher than in non-OBOR countries. After the initiative, the OFDI from China increases by 46.2% in OBOR countries. However, after controlling for the heterogeneity across OBOR and non-OBOR countries using the matching approach, the significance of the increasing effect caused by the OBOR initiative disappears. We also find the OBOR initiative diminishes the resource-seeking motivation and improves the market-seeking motivation of China’s OFDI. Our results cast doubts on the infrastructure-led and institution-based strategy of the OBOR initiative, but support the boosting effect of the OBOR initiative on institutional cooperation and cultural convergence. Thus, the OBOR initiative is a sustainable continuation and development of the long tradition of economic, institutional, and cultural convergence with the OBOR countries, rather than a temporary policy shock

    Heat treatment, microstructure and properties of 75Cr1 steel, for use in heavy loaded elements

    Get PDF
    This study aims to optimize the heat treatment of tool steel 75Cr1 which is used for heavy loaded elements in transmissions. A salt bath was used to quench and temper the steel at different temperatures. Mechanical tests and microstructural characterization were done to define the heat treatment parameters corresponding to the optimal performance of the elements. Optical microscopy, electron back scatter diffraction and x-ray diffraction were used to characterize the microstructure, while tensile tests and toughness tests were employed to determine the mechanical properties after different heat treatments. It was found that the yield strength decreases with increasing annealing temperature and that the toughness decreases with increasing annealing time and temperature. The changes of the mechanical properties are discussed in relation with the thermal treatment and the corresponding microstructures

    Inhibitory effect of HIV-specific neutralizing IgA on mucosal transmission of HIV in humanized mice

    Get PDF
    HIV-1 infections are generally initiated at mucosal sites. Thus, IgA antibody, which plays pivotal roles in mucosal immunity, might efficiently prevent HIV infection. However, mounting a highly effective HIV-specific mucosal IgA response by conventional immunization has been challenging and the potency of HIV-specific IgA against infection needs to be addressed in vivo. Here we show that the polymeric IgA form of anti-HIV antibody inhibits HIV mucosal transmission more effectively than the monomeric IgA or IgG1 form in a comparable range of concentrations in humanized mice. To deliver anti-HIV IgA in a continual manner, we devised a hematopoietic stem/progenitor cell (HSPC)–based genetic approach using an IgA gene. We transplanted human HSPCs transduced with a lentiviral construct encoding a class-switched anti-HIV IgA (b12-IgA) into the humanized bone marrow-liver-thymus (BLT) mice. The transgene was expressed specifically in B cells and plasma cells in lymphoid organs and mucosal sites. After vaginal HIV-1 challenge, mucosal CD4^+ T cells in the b12-IgA–producing mice were protected from virus-mediated depletion. Similar results were also obtained in a second humanized model, “human immune system mice.” Our study demonstrates the potential of anti-HIV IgA in immunoprophylaxis in vivo, emphasizing the importance of the mucosal IgA response in defense against HIV/AIDS

    Exploring the active ingredients and potential mechanisms of action of sinomenium acutum in the treatment of rheumatoid arthritis based on systems biology and network pharmacology

    Get PDF
    Objective: To investigate and predict the targets and signaling pathways of sinomenium acutum (SA) in the treatment of rheumatoid arthritis (RA) through systems biology and network pharmacology, and to elucidate its possible mechanisms of action.Methods: We screened the active ingredients and corresponding target proteins of SA in Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Traditional Chinese Medicines Integrated Database (TCMID) and Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (BATMAN); and obtained the targets of rheumatoid arthritis diseases in a database of gene-disease associations (DisGeNET), Online Mendelian Inheritance in Man (OMIM) database. The two targets were mapped by Venn diagram and the intersection was taken. The intersecting targets were used to construct protein-protein interaction (PPI) network maps in the String database, and Metascape was used for Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Finally, the molecular docking technique was applied to validate and further clarify the core target of SA for the treatment of rheumatoid arthritis.Results: A total of six active ingredients and 217 potential targets were obtained after screening; 2,752 rheumatoid arthritis-related targets and 66 targets common to RA and SA. GO function and KEGG pathway enrichment analysis yielded 751 GO function entries (652 GO biological processes, 59 GO molecular functions and 40 GO cellular components) and 77 KEGG signaling pathways. It mainly involves pathways related to neural activity ligand-receptor interaction pathways, cancer pathways, calcium signaling channels, Th17 cell differentiation and others, which are mainly classified into four categories, including regulation of immunity, anti-inflammation, regulation of cell growth and apoptosis, and signaling. The molecular docking results showed that the binding energy of PTGS2, CASP3, JUN and PPARG to the key components beta-sitosterol, 16-epi-Isositsirikine, Sinomenine and Stepholidine were ≤ −6.5 kcal/mol, suggesting the existence of molecular binding sites.Conclusion: SA acts on key targets such as PTGS2, CASP3, JUN, and PPARG to modulate signaling pathways such as neural activity ligand-receptor interaction, cancer, calcium ion, NF-κB, and Th17 cell differentiation to regulate immunity, anti-inflammation, modulation of cell cycle, bone metabolism, and signaling for the treatment of RA. It was also confirmed that the treatment of RA with SA has multi-component, multi-target, multi-pathway and multi-mechanism characteristics
    corecore